

CHONGQING CLOUDCHILD TECHNOLOGY CO.,LTD

DFN14*12 Plastic-Encapsulate MOSFETS

CCM80N10-6A Full bridge N Channel MOSFET

V _{(BR)DSS}	R _{DS(on)} TYP	I _D
40 V	8.0mΩ@10V	80A

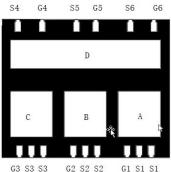
DESCRIPTION

The CCM80N10-6A provides excellent $R_{\text{DS(ON)}}$ with low gate charge. It can be used in a wide variety of applications.

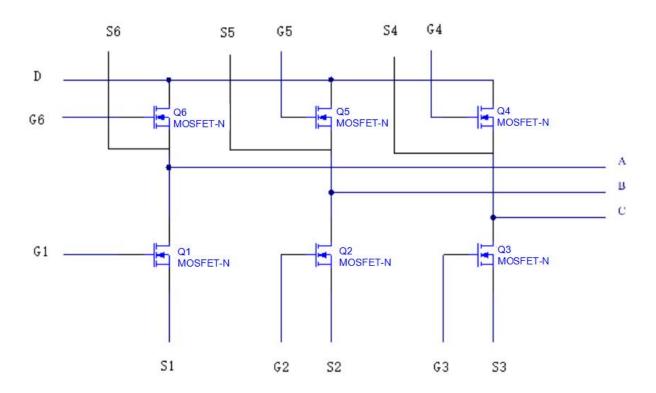
FEATURE

- Split Gate Trench Technology
- Low RDS(ON)
- Low Gate Charge
- Low Gate Resistance
- AEC Q101 qualified

APPLICATION


- motor control
- Full bridge module

MARKING



CCM80N10-6A =Part No. XXXXXXX = Code

EQUIVALENT CIRCUIT

Pin Definition

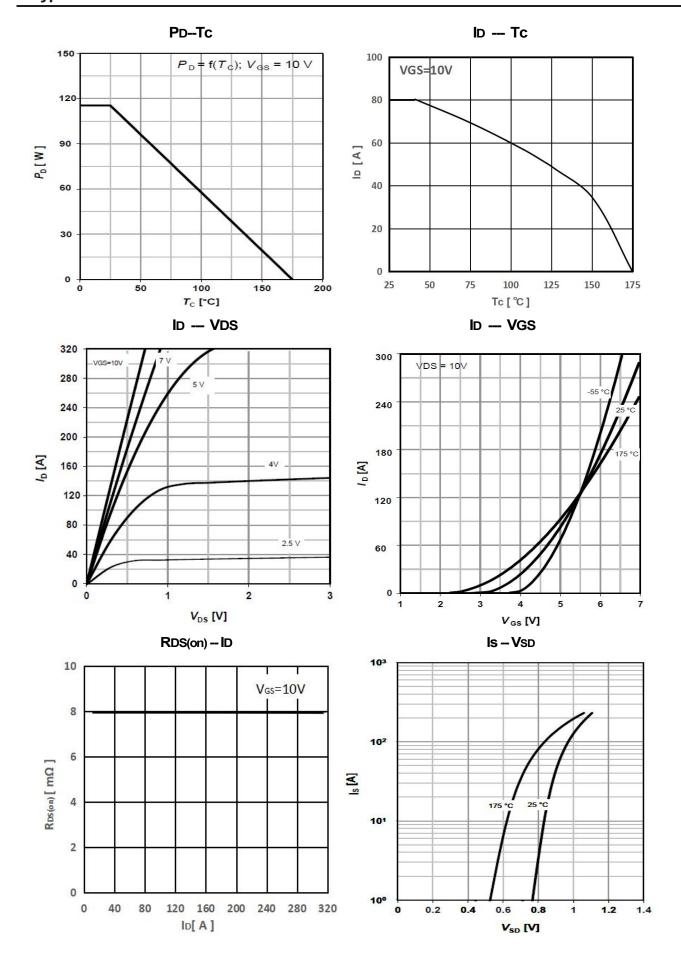
Number	Pin Definition	Remark	Number	Pin Definition	Remark
1	S1	Lower bridge u phase source	11	G4	Upper bridge w gate
2	S1	Lower bridge u phase source	12	S5	Upper Bridge v phase source collection
3	G1	Lower bridge u phase gate	13	G5	Upper bridge v gate
4	S2	Lower bridge v phase source	14	S6	Upper Bridge u phase source collection
5	S2	Lower bridge v phase source	15	G6	Upper bridge u gate
6	G2	Lower bridge v phase gate	PAD 1	D	DC Input
7	S3	Lower bridge w phase source	PAD 2	A	A phase output
8	S3	Lower bridge w phase source	PAD 3	В	B phase output
9	G3	Lower bridge w phase gate	PAD 4	С	C phase output
10	S4	Upper Bridge w phase source collection			

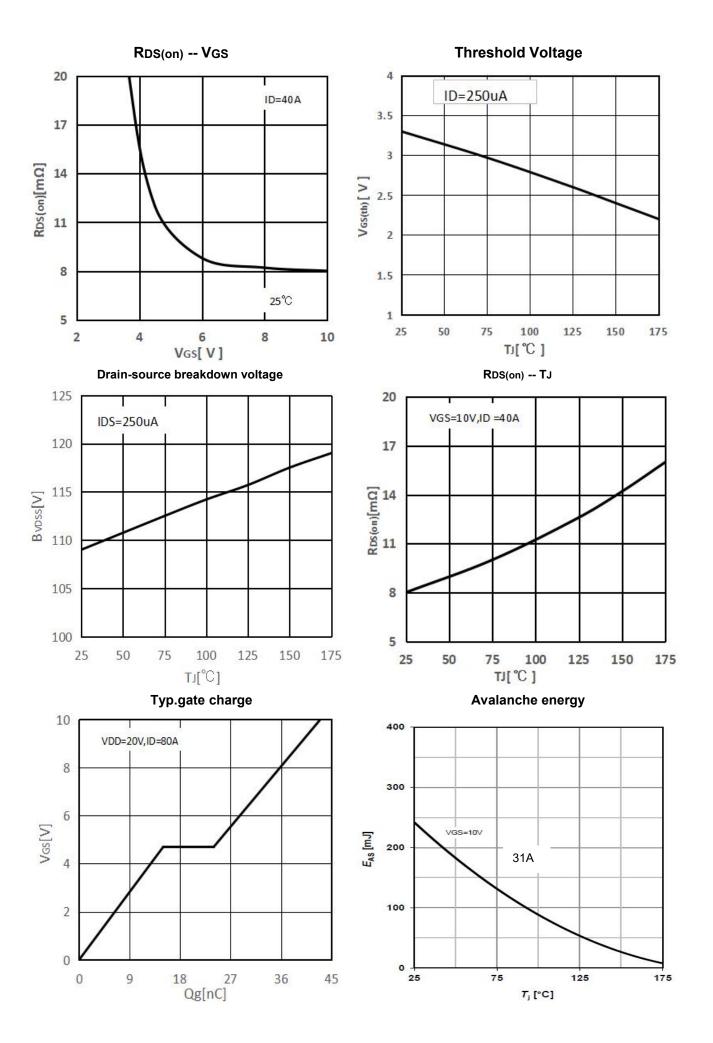
ABSOLUTE MAXIMUM RATINGS (T_a=25C unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current ¹	ID	80	Α
Pulsed Drain Current ²	IDM	320	Α
Single Pulsed Avalanche Energy ³	EAS	240	mJ
Total Power Dissipation	P _D	115	W
Thermal Resistance from Junction to Case ¹	R _{th} JC	1.3	°C/W
Junction Temperature	TJ	175	$^{\circ}$
Storage Temperature	Tstg	-55~+175	$^{\circ}$
Soldering Temperature , for 10S(1.6mm from case)	-	260	$^{\circ}$

Notes:

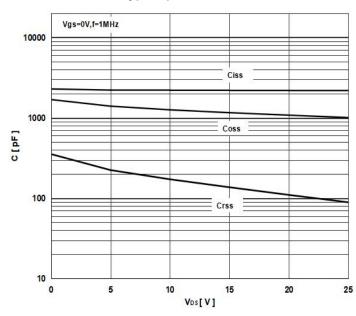
- 1. Current is limited by package; with a Rthjc = 1.3 $^{\circ}$ C/W the chip is able to carry 85 A at 25 $^{\circ}$ C.
- 2. Pulse Test : Pulse Width $\leq 10\mu s$, duty cycle $\leq 1\%$.
- 3. EAS condition: VDD = 20V,VGS = 10V, L = 0.5mH, RG = 25 Ω , las=31A, Starting TJ = 25 $^{\circ}$ $^{\circ}$ C.

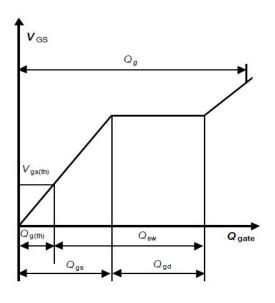

MOSFET ELECTRICAL CHARACTERISTICS

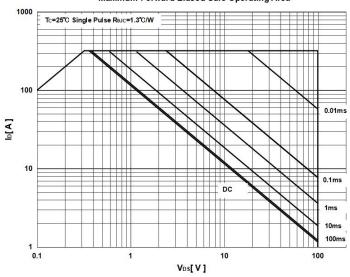

TC=25℃ unless otherwise specified

Parameter	Symbol	Test Condition	Min	Туре	Max	Unit	
Off Characteristics							
Drain - Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 250μA	100			V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 100V, V _{GS} = 0V			1	μA	
Gate - Body Leakage Current	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA	
On Characteristics ³							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0	3.3	4.0	V	
Drain-source On-resistance	R _{DS(on)}	V _{GS} = 10V, I _D = 40A		8.0	10	mΩ	
Forward Transconductance	g FS	V _{DS} = 10V, I _D = 40A		65		S	
Dynamic Characteristics							
Input Capacitance	C _{iss}			2183	2850		
Output Capacitance	Coss	$V_{DS} = 25V, V_{GS} = 0V, f = 1MHz$		1007	1350	pF	
Reverse Transfer Capacitance	Crss			89	120		
Gate Resistance	Rg	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$		2.1		Ω	
Switching Characteristics			•				
Total Gate Charge	Qg			43			
Gate-source Charge	Q_{gs}	$V_{DD} = 20V, V_{GS} = 10V, I_D = 80A$		15		nC	
Gate-drain Charge	Q_{gd}			9			
Turn-on Delay Time	t _{d(on)}			18			
Turn-on Rise Time	t _r	$V_{DD} = 20V, V_{GS} = 10V, R_L = 1\Omega$,		42		ns	
Turn-off Delay Ttime	$t_{d(off)}$	$R_G = 3\Omega$		31			
Turn-off Fall Time	t _f			8			
Source - Drain Diode Characteristics							
Diode Forward Voltage ³	V _{SD}	V _{GS} = 0V, I _S = 80A			1.2	V	
Continuous drain-source diode forward		_			90	A	
Current ¹	ls				80		
Pulsed drain-source diode forward current ²	I _{SM}	-			320	A	
Reverse recovery time	Trr	Vr=50V ,Ir=80A,dI/dt=100A/us		71		ns	
Reverse recovery charge	Qrr	551 ; 551 ;; dirac 1557 yd5		123		nC	

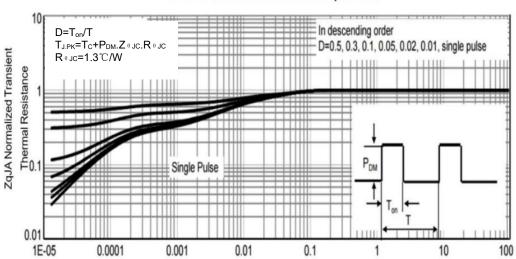
Notes:

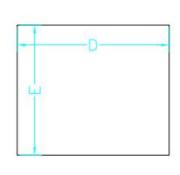

- 1. Current is limited by package; with a Rthjc = 1.3 $^{\circ}$ C/W the chip is able to carry 85 A at 25 $^{\circ}$ C.
- 2. P_W≤10µs, Duty cycle≤1%.
- 3. Pulse Test : Pulse Width $\leq 300\mu s$, duty cycle $\leq 2\%$.

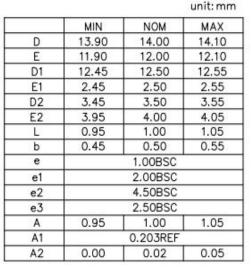



Typ. capacitances

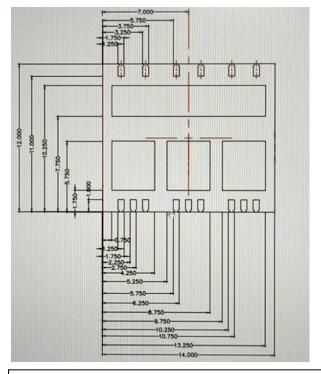
Gate charge waveforms




Maximum Forward Biased Safe Operating Area

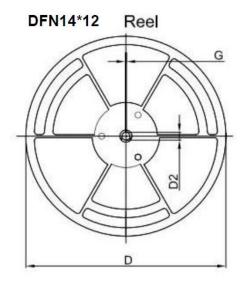

Normalized Thermal Transient Impedance

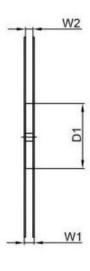
DFN14*12 Package Outline Dimensions



DFN14*12 Suggested Pad Layout

Note:


- 1. Controlling dimension: in millimeters.
- 2. General tolerance:0.5mm.
- 3. The pad layout is for reference purposes only.


NOTICE

Cloudchild reserve the right to make modifications, enhancements, improvements, crrections or other changes without further notice to any product herein. Cloudchild does not assume any liability arising out of the application or use of any product described herein.

ChongQing Cloudchild Technology Co., Ltd. (short for Cloudchild) exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Cloudchild products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that Cloudchild products are used within specified operating ranges as set forth in the most recent Cloudchild products specifications.

DFN14*12 Tape and Reel

			Dimensio	ns are in millime	ter	
Reel Option	D	D1	D2	G	W1	W2
13"Dla	Ø330.00	100,00	13.00	1.90	28.40	24.00

REEL	Reel Size	Box	Box Size(mm)	Carton	Carton Size(mm)
2,000 pcs	13 inch	4,000 pcs	340×336×29	20,000 pcs	353×346×365

Rev#	revise content
A/0	/