

CHONGQING CLOUDCHILD TECHNOLOGY CO., LTD

TO-263-2L Plastic-Encapsulate MOSFETS

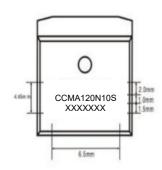
CCMA120N10S N-Channel Power MOSFET

V _{(BR)DSS}	R _{DS(on)} TYP I _D		
100V	4.2mΩ	120A	

DESCRIPTION

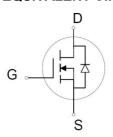
The CCMA120N10S uses advanced SGT technology and design to provide excellent $R_{\text{DS}(\text{ON})}$ with low gate charge. It can be used in a wide variety of applications.

TO-263-2L 1. GATE 2. DRAIN 3. SOURCE


FEATURE

- Extremely low on-resistance R_{DS(on)}
- Excellent Qg × R_{DS(on)} product(FOM)
- AEC Q101 qualified

APPLICATION


- Motor control and drive
- Battery management
- UPS (Uninterrupible Power Supplies)

MARKING

CCMA120N10S =Part No. XXXXXXX = Code

EQUIVALENT CIRCUIT

ABSOLUTE MAXIMUM RATINGS(TC=25℃ unless otherwise noted)

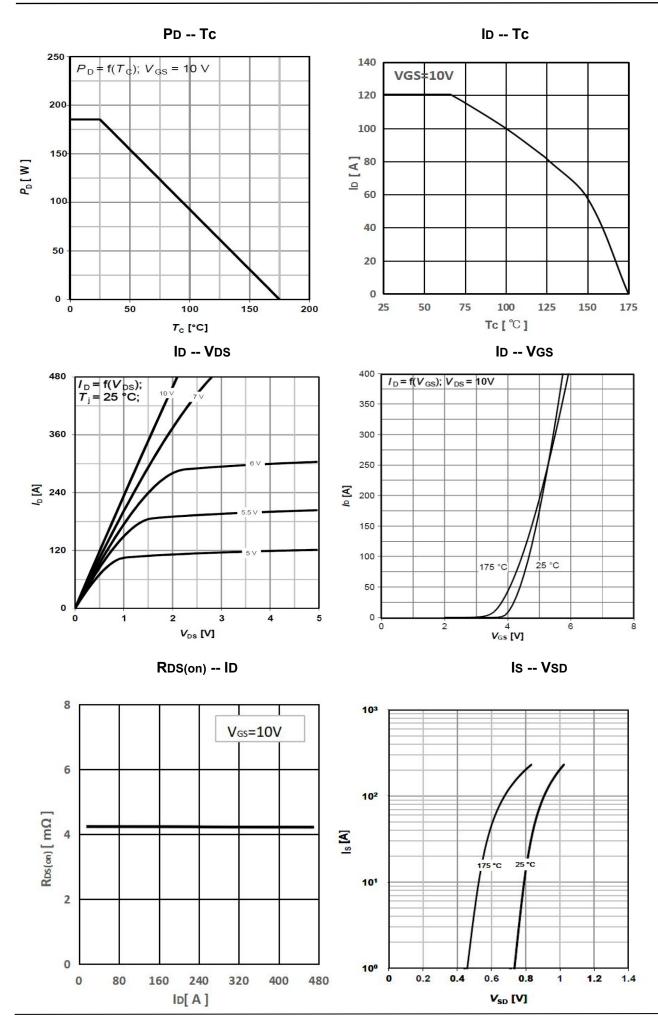
Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	100	V	
Gate-Source Voltage	VGS	±20	V	
Continuous Drain Current ¹	ID	120	А	
Pulsed Drain Current ²	IDM	480	А	
Single Pulse AvalancheEnergy³	Eas	729	mJ	
Total Power Dissipation	PD	188	W	
Thermal Resistance from Junction to Case	R _θ JC	0.79	°C/W	
Operating Junction and Storage Temperature Range	TJ,TSTG	-55~+175	$^{\circ}$ C	
Soldering Temperature , for 10S(1.6mm from case)	-	260	$^{\circ}\!\mathbb{C}$	

Notes:

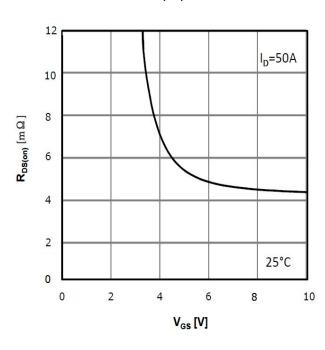
^{1.}Current is limited by package; with a Rthjc = 0.79 $^{\circ}\text{C/W}$ the chip is able to carry 141 A at 25 $^{\circ}\text{C}$.

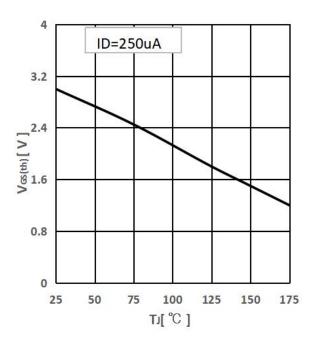
^{2.}Repetitive Rating: Pulse width limited by maximum junction temperature.

^{3.}EAS condition : Tj=25 $^{\circ}$ C,L=0.5mH,VGS=10V,VDD=50V, ID=54A.

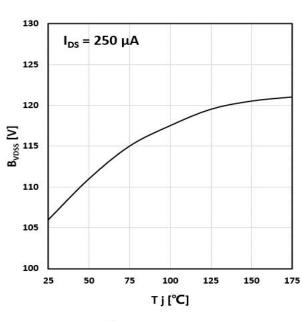

MOSFET ELECTRICAL CHARACTERISTICS

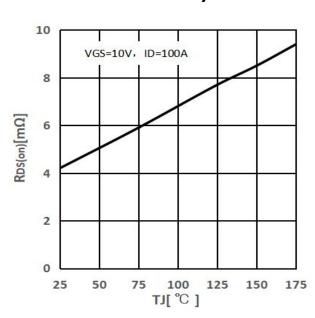
TC=25℃ unless otherwise specified


Parameter	Symbol	Test Condition	Min	Type	Max	Unit
Off characteristics						
Drain-Source breakdown Voltage	V(BR)DSS	V _{GS} = 0 V, I _D = 250 μA	100			V
Zero gate voltage drain current	IDSS	V _{DS} = 100V , V _{GS} = 0 V			1	μΑ
Gate-body leakage current	IGSS	$V_{DS} = 0 \text{ V}, \ V_{GS} = \pm 20 \text{ V}$			100	nA
On characteristics						
Gate threshold voltage ³	VGS(th)	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.0	3.0	4.0	V
Drain-source on-resistance ³	RDS(on)	V _{GS} = 10 V, I _D = 100 A		4.2	5.6	mΩ
Transconductance	gfs	V _{DS} =10V , I _D =100A		204		S
Dynamic characteristics ¹						
Input Capacitance	Ciss			4650	6050	
Output Capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$		2150	2800	pF
Reverse Transfer Capacitance	Crss	I = I IVIHZ		160	220	
Gate resistance	R _g	V _{GS} = 0 V, V _{DS} =0V, f=1MHz		1.7		Ω
Switching characteristics ¹						
Total Gate Charge	Qg			113		
Gate-Source Charge	Qgs	$V_{DD} = 50 \text{ V}, V_{GS} = 10 \text{ V},$ $I_{D} = 100 \text{ A}, f = 1 \text{ MHz}$		38		. nC
Gate-Drain Charge	Qgd			23		
Turn-on delay time	td(on)			25		
Turn-on rise time	tr	$V_{DD} = 50 \text{ V}, V_{GS} = 10 \text{ V},$		15		ns
Turn-off delay time	td(off)	$I_D = 100 \text{ A}, R_G = 3.5 \Omega$		53		
Turn-off fall time	tf			18		
Drain-Source Diode Character	stics			_		
Drain-source diode forward Voltage ³	VsD	V _{GS} =0V, I _{SD} =100A, T _j = 25 °C			1.2	V
Continuous drain-source diode forward current ²⁴	ls	Tc = 25 °C			120	Α
Pulsed drain-source diode forward current	ISM				480	Α
Reverse recovery time	trr	- IF=100A,dI/dt=100A/us		75		ns
Reverse recovery charge	Qrr	11 - 100A; 41/4t- 100A/45		163		nC

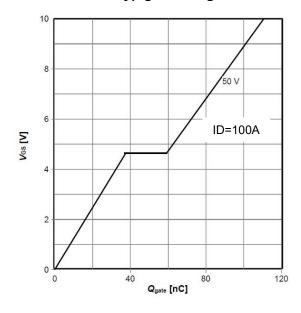

Notes:

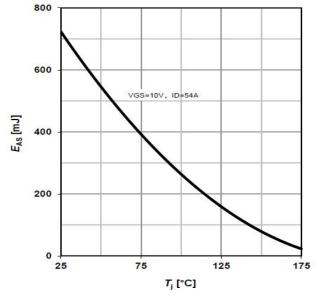
- 1. Guaranteed by design, not subject to production.
- 2.Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3.Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Current is limited by package; with a Rthjc = 0.79 $^{\circ}$ C/W the chip is able to carry 141 A at 25 $^{\circ}$ C.


Threshold Voltage



Drain-source breakdown voltage


RDS (on) -- Tj



Typ.gate charge

Avalanche energy

Typ.capacitance

10000

1000

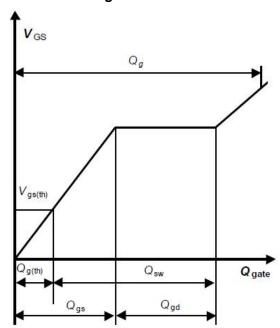
100

10

0

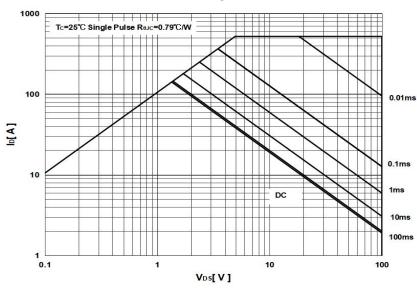
C[pF]

Ciss Vgs=0,f=1MHz Coss

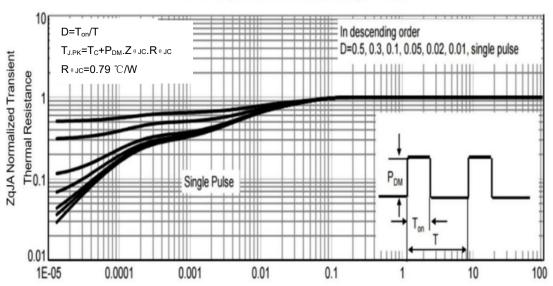

Crss

Vos[V]

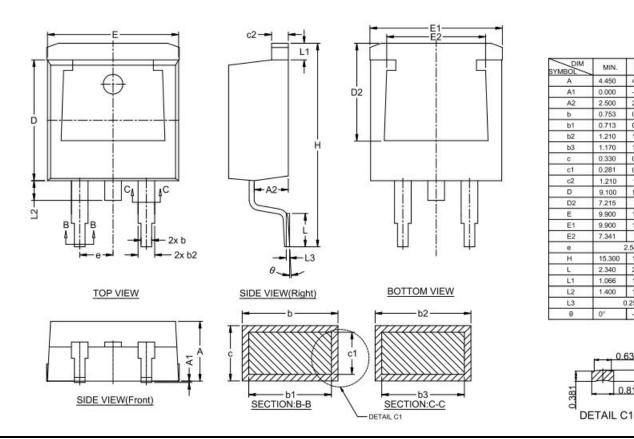
20

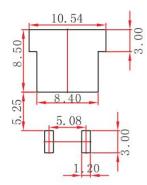

10

Gate charge waveforms



Safe operating area


30


Normalized Thermal Transient Impedance

TO-263-2L Package Outline Dimensions

TO-263-2L Suggested Pad Layout

Note:

- 1. Controlling dimension: in millimeters.
- General tolerance:0.5mm.
- The pad layout is for reference purposes only.

MIN

NOM.

4.550

2.600

0.853

0.813

1.270

0.381

1.310

7.415

10.000

10.100

540 BS

2.540

1.500

MAX

4.650

0.150

2.700

0.953

0.913

1.410

1.370

0.481

1.410

9.300

7.615

10.100

10.300

2.740

1.466

1.600

NOTICE

Cloudchild reserve the right to make modifications, enhancements, improvements, crrections or other changes without further notice to any product herein. Cloudchild does not assume any liability arising out of the application or use of any product described herein.

ChongQing Cloudchild Technology Co., Ltd. (short for Cloudchild) exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Cloudchild products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that Cloudchild products are used within specified operating ranges as set forth in the most recent Cloudchild products specifications.

Date of change	Rev#	revise content
2024/01/20	A/0	/